Lecture 06: Private-key Encryption (Definition \& Security of One-time Pad)

Objective

- First, we shall define the correctness and the security of private-key encryption schemes
- We shall argue that the one-time pad is correct and secure
- Three algorithms
- Key Generation: Generate the secret key sk
- Encryption: Given the secret key sk and a message m, it outputs the cipher-text c (Note that the encryption algorithm can be a randomized algorithm)
- Decryption: Given the secret key sk and the cipher-text c, it outputs a message m^{\prime} (Note that the decryption algorithm can be a randomized algorithm)
- Yesterday Alice and Bob met and generated a secret key sk \sim Gen()
- Read as: the secret key sk is sampled according to the distribution Gen()
- Today Alice wants to encrypt a message m using the secret key sk. Alice encrypts $c \sim \operatorname{Enc}_{\text {sk }}(m)$
- Read as: the cipher-text c is sampled according to the distribution $\mathrm{Enc}_{\mathrm{sk}}$ (m)
- Then Alice sends the cipher-text c to Bob. An eavesdropper gets to see the cipher-text c
- After receiving the cipher-text c Bob decrypts it using the secret key sk. Bob decrypts $m^{\prime} \sim \operatorname{Dec}_{\text {sk }}(c)$
- Read as: the decoded message m^{\prime} is sampled according to the distribution $\operatorname{Dec}_{\text {sk }}(c)$
- We want the decoded message obtained by Bob to be identical to the original message of Alice with high probability
- We insist

$$
\mathbb{P}\left[\mathbb{M}=\mathbb{M}^{\prime}\right]=1
$$

- Recall we use capital alphabets to represent the random variable corresponding to the variable (so, \mathbb{M} is the random variable for the message encoded by Alice and \mathbb{M}^{1} is the random variable for the message recovered by Bob)
- We want to say that the cipher-text c provides the adversary no additional information about the message
- We insist that, for all message m, we have

$$
\mathbb{P}[\mathbb{M}=m \mid \mathbb{C}=c]=\mathbb{P}[\mathbb{M}=m]
$$

Cropping any Constraint makes the Problem Trivial

- Suppose we insist only on correctness and not on security
- The trivial scheme where $\operatorname{Enc}_{\text {sk }}(m)=m$, i.e. the encryption of any message m using any secret key sk is the message itself, satisfies correctness. But is completely insecure!
- Suppose we insist only on security and not on correctness
- The trivial scheme where $\operatorname{Enc}_{\text {sk }}(m)=0$, i.e. the encryption of any message m using any secret key sk is 0 , satisfies this security. But Bob cannot correctly recover the original message m with certainty!
- So, the non-triviality is to simultaneously achieve correctness and security

One-time Pad

- Let (G, o) be a group
- Secret-key Generation:

Gen() :

- Return sk $\stackrel{\&}{\leftarrow} G$
- Encryption:
$\operatorname{Enc}_{\text {sk }}(m)$:
- Return $c:=m \circ \mathrm{sk}$
- Decryption:
$\operatorname{Dec}_{\text {sk }}(c):$
- Return $m^{\prime}:=c \circ \operatorname{inv}(\mathrm{sk})$
- Note that Encryption and Decryption is deterministic
- The only randomized step is the choice of sk during the secret-key generation algorithm

Correctness of One-time Pad

- It is trivial to see that

$$
\mathbb{P}\left[\mathbb{M}=\mathbb{M}^{\prime}\right]=1
$$

- So, one-time pad is correct!

Security of One-time Pad I

- We want to simplify the probability

$$
\mathbb{P}[\mathbb{M}=m \mid \mathbb{C}=c]
$$

- Using Bayes' Rule, we have

$$
=\frac{\mathbb{P}[\mathbb{M}=m, \mathbb{C}=c]}{\mathbb{P}[\mathbb{C}=c]}
$$

- Using the fact that $\mathbb{P}[\mathbb{C}=c]=\sum_{x \in G} \mathbb{P}[\mathbb{M}=x, \mathbb{C}=c]$, we get

$$
=\frac{\mathbb{P}[\mathbb{M}=m, \mathbb{C}=c]}{\sum_{x \in G} \mathbb{P}[\mathbb{M}=x, \mathbb{C}=c]}
$$

Security of One-time Pad II

- We will prove the following claim later

Claim

For any $x, y \in G$, we have

$$
\mathbb{P}[\mathbb{M}=x, \mathbb{C}=y]=\mathbb{P}[\mathbb{M}=x] \cdot \frac{1}{|G|}
$$

- Using this claim, we can simplify the expression as

$$
\begin{aligned}
& =\frac{\mathbb{P}[\mathbb{M}=m] \cdot \frac{1}{|G|}}{\sum_{x \in G} \mathbb{P}[\mathbb{M}=x] \cdot \frac{1}{|G|}} \\
& =\frac{\mathbb{P}[\mathbb{M}=m]}{\sum_{x \in G} \mathbb{P}[\mathbb{M}=x]}
\end{aligned}
$$

- Using the fact that $\sum_{x \in G} \mathbb{P}[\mathbb{M}=x]=1$, we get that the previous expression is

$$
=\mathbb{P}[\mathbb{M}=m]
$$

- This proves that $\mathbb{P}[\mathbb{M}=m \mid \mathbb{C}=c]=\mathbb{P}[\mathbb{M}=m]$, for all m and c. This proves that the one-time pad encryption scheme is secure!
- You will prove the following statement in the homework: If there exists sk such that $x \circ s k=y$ then sk is unique (i.e., there does not exist $\mathrm{sk}^{\prime} \neq \mathrm{sk}$ such that $x \circ \mathrm{sk}^{\prime}=y$)
- Using this result, we get the following. Suppose $z \in G$ be the unique element such that $x \circ z=y$. Then we have:

$$
\mathbb{P}[\mathbb{M}=x, \mathbb{C}=y]=\mathbb{P}[\mathbb{M}=x, \mathbb{S K}=z]
$$

- Note that the secret-key is sample independent of the message x. So, we have

$$
\mathbb{P}[\mathbb{M}=x, \mathbb{S} \mathbb{K}=z]=\mathbb{P}[\mathbb{M}=x] \cdot \mathbb{P}[\mathbb{S K}=z]
$$

- Note that sk is sampled uniformly at random from the set G. So, we have

$$
\mathbb{P}[\mathbb{M}=x, \mathbb{S} \mathbb{K}=z]=\mathbb{P}[\mathbb{M}=x] \cdot \frac{1}{|G|}
$$

Example I

- Encrypting bit messages
- Consider $(G, \circ)=\left(\mathbb{Z}_{2},+\bmod 2\right)$

Example II

- Encrypting n-bit strings
- Consider $G=\{0,1\}^{n}$
- Define $\left(x_{1}, \ldots, x_{n}\right) \circ\left(y_{1}, \ldots, y_{n}\right)=\left(x_{1}+y_{1}\right.$ $\left.\bmod 2, \ldots, x_{n}+y_{n} \bmod 2\right)$

Example III

- Encrypting an alphabet
- Consider $G=\mathbb{Z}_{26}$
- Define 0 as $+\bmod 26$
- You will construct one more scheme in the homework by interpreting the set of alphabets as \mathbb{Z}_{27}^{*}

Example IV

- Encrypting n-alphabet words
- Consider $G=\mathbb{Z}_{26}^{n}$
- Define \circ as the coordinate-wise $+\bmod 26$

